表明四相侧电流互感器二次侧绕组的公共接地点有电流流过。而三相侧的中间变流器本质上则是将三相对称电流变换为相位互差90º的两相电流,以便与四相侧的电流互感器二次侧电流比较,所以三相侧中间变流器的接地点也有电流流过。因此,四相侧电流互感器二次侧绕组的接地点与三相侧的中间变流器接地点之间必须构成可靠的通路。3.2 三继电器方案 根据式(3),如果将四相侧的电流变换到三相侧,即可以构成差动保护的三继电器方案。式(3)的变换矩阵中有5个非零元素,但是其**列中有两个元素互为负数,故可以节省一个中间变流器。同时,**列中有两个元素之和为另一个元素的负数,还可以节省一个中间变流器。三继电器差动保护接线方案如图3所示。<BR> 三相侧与四相侧电流互感器分别为1AT和2AT,对应的变比分别为n1AT和n2AT。四相侧电流互感器的二次侧有3个中间变流器分别为1LB、2LB和3LB,对应的变比分别为n1LB、n2LB和n3LB。电流互感器变比的选择原则为:n2AT/n1AT = k。中间变流器变比的选择原则为:n1LB=n2LB=3.3 电流互感器连接方式的讨论 下面进一步讨论变压器中性点运行方式变化对电流互感器连接方式的影响。当三相变四相变压器在四相侧发生外部短路接地或短路不接地故障时,由于半零序电流的通路与中性点是否接地无关[5],所以变压器四相侧中性点即使在不接地运行方式下,甚至四相侧绕组四边形连接时,输入变压器的半零序电流仍有通路。为了滤去半零序电流,避免差动保护在变压器外部接地短路故障时误动,则四相侧电流互感器的连接方式是**的,即如本文所述,电流互感器二次侧绕组对角相必须反相并联。 如果变压器三相侧的中性点不接地时,三相侧外部接地短路故障无零序电流通路。或者如果采用上述的两继电器方案,由于三相侧电流通过中间变流器变换后也可以滤去三相零序电流。在这两种情况下,三相侧电流互感器的二次侧绕组也可以采用星形连接,只是电流变换矩阵的元素则与本文讨论的情况不同,在此不再赘述。4 结论(1)提出了三相变四相电力变压器的两种差动保护接线方案,这两种方案均适用于该变压器两侧的中性点接地或不接地运行方式。(2)所述差动保护方案也可用微机保护装置实现,此时中间变流器的作用则由计算机软件实现。差动保护接线方案中的差动继电器的整定计算和灵敏度校验方案与普通电力变压器差动保护相同。(3)文中采用了对称分量法及电流变换矩阵的分析方法讨论所述的差动保护原理,为不等相变换的平衡变压器差动保护研究提供了一般性的分析方法。根据这种分析原理,还可以很方便地构成任意接线的其它三相变两相平衡变压器或三相变四相电力变压器的差动保护接线方案。