试验变压器的工作状态电磁转差离合器的调速原理是基于电磁感应定律。当励磁绕组通以直流电时,沿气隙圆周面将形成若干对极**替的磁极,其磁通穿过气隙与电枢相链。当电动机带动电枢旋转时,电枢与磁极之间有相对运动试验变压器,因感应而产生电势,这一感应电势将在电枢中形成涡流,其方向可由右手定则确定。此涡流又与磁场的磁通相互作用,产生电磁力,其方向可按左手定则确定,这个力作用于电枢一个转矩试验变压器保证系统稳定,其方向与电枢的旋转方向相反,是与带动电枢旋转的拖动转矩相平衡的制动力矩。这个力及力矩也同样作用在磁极上,其方向与电枢旋转方向相同,它使磁极沿电枢旋转方向旋转,并拖动泵或风机旋转。 为了对鼠笼型电动机进行定子电压调节,必须加上调压装置。过去常用的方法是用饱和电抗器式调压装置、自耦变压器式调压器、感应式调压器等。晶闸管出现以后,由于它不消耗铜铁材料,体积小,价格低试验变压器,控制方便,很快成为交流调压装置的主要部件。用晶闸管调压调速的方法是由三只双向晶闸管或三组反并联的晶闸管,串接在电动机的定子端。通过控制晶闸管的移相控制角α,就能对交流电压作阻断控制,从而改变电动机的端电压,实现对电动机的调速。 从转子端向斩波器看过去,相当于在X-Y上接一个等效电阻R*。当晶闸管导通时R*=0,晶闸管断开时R*=Rex。因此,调节晶闸管在导通和断开的一个斩波周期内的占空比,就可以得到从零到Rex变化的电阻R*。故斩波器调速可以实现无触点、无级调速。
绕线式异步电动机转子串电阻调速属于有转差损失的低效调速方式试验变压器。叶片式泵与风机采用这种调速方式时,其调速效率等于转速比,即η =n2/n1=i,式中n2为电动机串接电阻R时的转速,n1为电动机的外接电阻R=0时的转速;其转差损失的*大值发生在2/3额定转速处,即Δ Pmax=0.148Pn,式中Pn为电动机在额定转速时(即R=0时)的输出功率,即绕线式电动机转子串电阻调速时试验变压器,调速效率η和转差损失的规律与液力调速离合器相同。
电信基站等设备需要多路供电电源,以满足不同的输出电压、输出电流要求。机房的主电源通常先被转换为+48V或-48V直流电源,然后根据需要传送到各个系统设备,*后再转换成较低等级的电源电压。
常见的设计方案是利用电源模块或现成的转换器(砖)将48VDC(或-48VDC)电源转换到一个较低的电源电压试验变压器,然后再由电源模块或PCB板上电路将其转换为要求的各种电压。一个典型例子是试验变压器,从48V输入转换到8.5V,通常这个8.5V与48V输入是电气隔离的。
如果考虑转换器的占空比试验变压器保证供电连续性,则需作进一步的复杂计算,因为占空比与输入、输出电压比和负载有关,为便于讨论,我们假设占空比为50%,可以利用图2电路获得大约17V的电压。需要输出更高电压时,可以级联更多的倍压单元电路,**倍压使用两个二极管和两个电容,可产生低电流直流输出(图2a)。
我们可以将上述电路产生的17V DC应用到一个简单的低电流线性稳压器(如MAX1616),目的是为低RDSon N沟道FET提供栅极驱动。FET器件采用8.5V供电,输出7.5V为RF放大器供电,通过电位器分压反馈网络调节线性稳压器输出试验变压器。该电路利用MAX5060评估板、MAX1616线性稳压器、N沟道功率MOSFET以及相关的其它元件进行了测试,简化原理图如图3所示试验变压器,实际电路如图4所示。
MAX5060EVKIT降压转换器可产生3.3V电压,输出电流达20A,开关频率约为270kHz,由12V输入产生3.3V输出。由于图4电路工作在轻载条件下,负载电流只有1A,作用在电感上的电压波形占空比为25%,摆幅介于地电平和12V之间。利用该开关电压驱动倍压电路,可以在线性稳压器(MAX1616)的输入端得到大约24V的直流电压。实际倍压输出为22.7V,能够为线性稳压器提供足够的驱动。线性稳压器的输出可驱动低RDSon N沟道FET(IRFZ24N)的栅极。位移因数通常是滞后的,但与单相时相比,位移因数更接近1。? 随负载加重(wRC的减小)试验变压器,总的功率因数提高;同时,随滤波电感加大,总功率因数也提高。(4) 整流输出电压和电流的谐波分析整流电路的输出电压中主要成分为直流,同时包含各种频率的谐波试验变压器,这些谐波对于负载的工作是不利的。a、a =0°时,m脉波整流电路的整流电压和整流电流的谐波分析
如图2-26,当a=0?时,m脉波整流电路的整流电压和电流中的谐波有如下规律:m脉波整流电压ud0的谐波次数为mk(k=1,2,3...)次,即m的倍数次;整流电流的谐波由整流电压的谐波决定,也为mk次。当m一定时,随谐波次数增大,谐波幅值迅速减小,表明*低次(m次)谐波是*主要的试验变压器,其它次数的谐波相对较少;当负载中有电感时,负载电流谐波幅值dn的减小更为迅速。当m增加时,*低次谐波次数增大,且幅值迅速减小,电压纹波因数迅速下降。 b、a不为0 °时的情况
纵观目前市场上的Hi-Fi功放, 输出功率在100W以上的以甲乙类放大产品居多试验变压器,50~100W的功放中甲类放大产品占有相当的比例。从高保真的角度来看,功率储备大些当然是好,但若从节省能源的角度来看试验变压器前面的要求,就值得考虑了。由于纯甲类功放的效率很低,所以在您欣赏美妙音乐的同时,约有百分之七八十以上的电能变成热量散发掉了。一台每声道输出功率为50W的纯甲类功放,若以30%计其效率,则静态功耗就有 330W之大,说句玩笑话,简直是“守着火炉吃西瓜试验变压器”。笔者在帮人选购功放时就经常遇到这样的情况:很多人虽然为纯甲类功放的音色所倾倒,但也往往因其 “发高烧”的工作状态而忍痛割爱。功耗大也是电子管功放的致命弱点。市场经济是无情的。国内几家有名的生产胆机的厂家,如斯巴克、欧博、大极典也先后推出了自己的晶体管功放,就证明了这一点。