首页 >>> 公司新闻 >

公司新闻

试验变压器的基本特性

试验变压器的基本特性
这一过程从首先假设各MOSFET的结温开始试验变压器,同样的过程对于每个MOSFET单独进行。MOSFET的功率耗散和允许的环境温度都要计算。

  当允许的周围温度达到或略高于电源封装内和其供电的电路所期望的*高温度时结束。使计算的环境温度尽可能高看似很诱人,但这通常不是一个好主意。这样做将需要更昂贵的MOSFET、在MOSFET下面更多地使用铜片试验变压器的耐受水平,或者通过更大或更快的风扇使空气流动。所有这些都没有任何保证。

  在某种意义上,这一方案蒙受了一些“回退”。毕竟试验变压器,环境温度决定MOSFET的结温,而不是其他途径。但从假设结温开始所需要的计算,比从假设环境温度开始更易于实现。

如图所示它是利用环氧树脂系接着剂将铜箔黏贴在金属基材的表面,透过金属基材与绝缘层材质的组合变化,可以制成各种用途的LED封装基板。

  高散热性是高功率LED封装用基板不可或缺的基本特性试验变压器,因此上述金属系LED封装基板使用为铝与铜等材料,绝缘层大多使用充填高热传导性无机填充物(Filler)的填充物环氧树脂。

传统高散热封装是将LED芯片设置在金属基板上周围再包覆树脂,然而这种封装方式的金属热膨胀系数与LED芯片差异非常大,当温度变化非常大或是封装作业不当时极易产生热歪斜(thermal strain;热剪应力),进而引发芯片瑕疵或是发光效率降低。

  未来LED芯片面临大型化发展时试验变压器,热歪斜问题势必变成无法忽视的困扰,有关这点具备接近LED芯片的热膨胀系数的陶瓷,可说是热歪斜对策非常有利的材料。

  图13是高功率LED陶瓷封装的外观;图14是高功率LED陶瓷封装的基本结构试验变压器机能耗的要求,图14(b)的反射罩电镀银膜。它可以提高光照射率,图14(c)的陶瓷反射罩则与陶瓷基板呈一体结构。

有关高功率LED的封装结构,要求能够支持LED芯片磊晶接合的微细布线技术;有关材质的发展,虽然氮化铝已经高热传导化,不过高热传导与反射率的互动关系却成为另一个棘手问题,一般认为未来若能提高热传导率低于氮化铝的氧化铝的反射率试验变压器,对高功率LED的封装材料具有正面帮助。

  随着LED大型化、大电流化、高功率化的发展,事实上单靠封装基板单体并无法达成预期的散热效,必需配合封装基板周边的散热材料,以及LED封装结构才能进行有效的散热。
对于传输线来说 ,可以看成是由许多电感、电容组成的耦合链,俯底,如图3-26所示。电感为导线ΔL的电感量,电容为两导线间的分布电容。

    当信号源加入 1、3端时,由于传输线间电容的存在,信号源对电,容充电,使电容储存电场能。电容通过临近电感放电,使电感储存磁场能。即电场能转变为磁场能。然后电感又向后面的电容进行能量交换试验变压器,磁场能转换成电场能。再往后电容又与后面的电感进行能量交换,如此往复下去。输入信号就以电磁能交换的形式,自始端传输到终端,*后被负载吸收。

这个电路的工作频率范围为 (2-30)MHZ,输出功率为6OW。根据负载为50Ω,经B3的4:1阻抗变换,T2的集电极负载就为200Ω,由于工作于大功率状态,其输入电阻为12Ω左右,且会随输入信号大小变化试验变压器机能耗的要求。为了减小输入阻抗变化对前级放大器的影响,在T2的输入端并接了一个12Ω的电阻,使总的输入电阻变成为6Ω,经16:1阻抗变换,Tl的集电极负载为96Ω。