激光驱动可调谐圆偏振太赫兹辐射研究*新进展

分享到:
101
下一篇 >

太赫兹谱及相关控制在物理,生物,医学等诸多领域均有所应用,而产生于气体和固体等离子体的太赫兹辐射频率可达 100THz,*近研究表明将泵浦光与其二次谐波形成的双色场将有效地产生高达 MV/cm 强度的太赫兹辐射,这种由线性偏振的激光驱动的辐射由于气体等离子体的调制,其偏振将由线偏振变为椭圆偏振。而为获得可控偏振的辐射,椭圆偏振,圆偏振等激光脉冲则用于产生所需的太赫兹辐射。

本文提出将静磁场加在双色线偏振激光传输轴线上,辐射方向可由磁场方向控制,磁场强度为 100T 时,电子的回旋振荡频率远高于等离子体振荡频率,而辐射频率在回旋振荡频率附近,并可由磁场强度调节。在该条件下,磁场控制等离子体振荡,而且影响着等离子体电子的轨迹,进而产生这样的辐射特征。由于回旋频率远大于等离子体频率,辐射为多周期的包络,因而辐射为窄带谱。

如图 1 所示为真空中沿-x 方向传播的太赫兹辐射的空间分布,磁场为 178T 沿+x 方向。与此对比,无磁场时辐射由虚线表示,此时辐射与其他研究工作一致,均为单周期波形。而加上磁场之后,辐射具有了 y和 z 两个方向的分量,两个分量具有相同的频率,并且具有位相差。

如图2所示为辐射的时间波形,可见辐射为 5THz,与回旋振荡频率相等,y和z 分量则相差 pi/2 位相,当磁场方向翻转时,位相则改变为-pi/2,如图 2 所示。太赫兹辐射过程主要发生如下:首先,通过电离产生了等离子体和静电流,电流进一步驱动了等离子体中的静电振荡场,该场在等离子体边界转换为电磁辐射,没有静磁场时,电子具有沿激光极化方向的速度,即 z 方向,而加上 x 方向磁场后,电子则在 y-z 平面旋转,因此辐射也具有了 y 和 z 分量。未来可实现全光控制的磁控双色场产生THz 辐射源。

你可能感兴趣: 技术文章 图片
无觅相关文章插件,快速提升流量