变频器原理及谐波干扰与抑制变频器低频特性当变频器距电动机距离较大时及高次谐波对控制电路的干扰,
极易引
起电动机的爬行。
变频器低频特性有低频启动特性,变频器低频特性在异步电动机改变定
子频率
F1,
即可平滑地调节电动机的同步转速
,
但是随着
F1
的变化
,
。
。
变频器原理在变频器中要进行大功率二极管整流、
大功率晶体管逆变,
结果是在输入输
出回路产生电流高次谐波,
干扰供电系统、
负载及其他邻近电气设备。
变频器原理在实际使
用过程中,
经常遇到变频器谐波干扰问题,
下面简单介绍谐波产生的机理、
传播途径及有效
抑制干扰的方法。
变频器原理在变频器谐波产生机理
,变频器的主电路一般为交
-
直
-
交组成,外部输入
380V/50Hz
的工频电源经三相桥路不可控整流成直流电压信号,
经滤波电容滤波及大功率晶
体管开关元件逆变为频率可变的交流信号。
变频器原理在整流回路中,
输入电流的波形为不
规则的矩形波,
波形按傅立叶级数分解为基波和各次谐波,
变频器原理其中的高次谐波将干
扰输入供电系统。
变频器原理及谐波干扰与抑制
变频器原理在逆变输出回路中,
输出电流信号是受
PWM
载波信号调制的脉冲波形,
对于
GTR
大功率逆变元件,
变频器原理其
PWM
的载波频率为
2
~
3kHz
,
而
IGBT
大功率逆变元件的
PWM
*高载频可达
15kHz
。同样变频器原理,输出回路电流信号也可分解为只含正弦波的基
波和其他各次谐波,而高次谐波电流对负载直接干扰。
变频器原理另外高次谐波电流还通过电缆向空间辐射,
干扰邻近电气设备。
变频器原理抑
制谐波干扰常用的方法
谐波的传播途径是传导和辐射,变频器原理解决传导干扰主要是在
电路中把传导的高频电流滤掉或者隔离;
解决辐射干扰就是对辐射源或**扰的线路进行屏
蔽。
变频器原理具体常用方法:
(1)
变频系统的供电电源与其他设备的供电电源相互独立,
或在变频器和其他用电设备的输入侧安装隔离变压器,
切断谐波电流。
变频器原理在变频器
输入侧与输出侧串接合适的电抗器,或安装谐波滤波器,滤波器的组成必须是
LC
型,吸收
谐波和增大电源或负载的阻抗,达到抑制谐波的目的。
变频器原理在电动机和变频器之间电缆应穿钢管敷设或用铠装电缆,
并与其他弱电信号
4
在不同的电缆沟分别敷设,
避免辐射干扰。
变频器原理在信号线采用屏蔽线,
且布线时与变
频器主回路控制线错开一定距离
(
至少
20cm
以上
)
,切断辐射干扰。
变频器原理使用专用接地线,
且用粗短线接地,
邻近其他电器设备的地线必须与变频器
配线分开,使用短线。变频器原理这样能有效抑制电流谐波对邻近设备的辐射干扰。
变频器原理在抑制谐波干扰实例,
某变频切换控制系统,
变频器启动运行正常,
而邻近
液位计读数偏高,一次表输入
4mA
时,液位显示不是下限值;
液位未到设定上限值时,
液位
计却显示上限,致使变频器接收停机指令,迫使变频器停止运行。变频器原理
这显然是变
频器的高次谐波干扰液位计,干扰传播途径是液位计的电源回路或信号线。
变频器原理解决办法:
将液位计的供电电源取自另一供电变压器,
谐波干扰减弱,
再将
信号线穿入钢管敷设,
并与变频器主回路线隔开一定距离,
经这样处理后,
谐波干扰基本抑
制,液位计工作恢复正常。某变频控制液位显示系统,液位计与变频器在同一个柜体安装,
变频器工作正常,而液位计显示不准且不稳,
起初我们怀凝一次表、二次表、信号线及流体
介质有问题,更换所有这些仪表、信号电缆,变频器原理并改善流体特性,故障依然存在,
而这故障就是变频器的高次谐波电流通过输出回路电缆向外辐射,
传递到信号电缆,
引起干
扰。
变频器原理解决办法:
液位计信号线及其控制线与变频器的控制线及主回路线分开一定
距离,且柜体外信号线穿入钢管敷设,外壳良好接地,故障排除。例
3
,某变频控制系统,
变频器原理由两台变频器组成,
且在同一柜体内,
变频器调频方式均为电位器手调方式,
运
行某一台变频器时,
工作正常,
两台同时运行时,
频率互相干扰,
即调节一台变频器的电位
器对另一台变频器的频率有影响,变频器原理反过来也一样。
变频器原理开始我们认为是电位器及控制线故障,
排除这种可能后,
断定是谐波干扰引
起。
变频器原理解决办法:把其中一只电位器移到其他柜体固定,且引线用屏蔽信号线,
结果干扰减弱。
变频器原理为了彻底抑制干扰,
重新加工一个电控柜,
并与原柜体一定距离放臵,
把其
中的一台变频器移到该电控柜,
相应的接线及引线作必要的改动,
这样处理后,
干扰基本消
除,故障排除。例
4
,某变频控制系统,切换两套机泵,原先机泵是靠自耦降压启动工频运
行正常,
变频器原理现改为变频运行,
虽能实现调频减速功能,
但变频器输出端到电动机间
的输出线严重发热,电动机外壳温升加重,经常出现保护跳闸。
变频器原理这是由于变频器输出电压和电流信号中包含
PWM
高次谐波,
而谐波电流在输
出导线和电动机绕线上形成附加功率损耗。
解决办法:把变频器输入线与输出线分开,变
5
频器原理分别走各自的电缆沟,
选用大一号截面的电缆换原先电缆,
输出端与电动机之间的
电缆长度尽可能短。
变频器原理这样处理后,
发热故障排除。
变频器原理对现场出现的各种变频器高次谐波
干扰,
基本上都能照以上介绍的方法顺利抑制,
但对谐波成分及幅度要求很严的设备,
彻底
抑制高次谐波干扰非常困难,变频器原理有待进一步攻关解